The fast WekaIO file system saves you money!

WekaIO file system logoIt is a fact of IT life: hardware becomes faster and more powerful with every new generation on the market. That absolutely applies to CPUs. A few weeks ago at Intel’s Data Centric Innovation Day in San Francisco, Intel presented their new Intel Xeon scalable processors. These beasts now scale up to 56 cores per socket, with up to 8 sockets per system/motherboard. This incredible amount of compute power enables applications to “do things”, whether it’s analytics, machine learning, or running cloud applications.

One thing in common across all applications is that they don’t want to wait for data. As soon as your %iowait is going up, you are wasting your precious and expensive compute power because the storage subsystem is not fast enough. Fortunately, WekaIO wants to make sure this will not be the case for your applications.

Continue reading

PSA: Isilon L3 cache does not enable with a 1:1 HDD:SSD ratio

Isilon L3 cache not enablingI recently expanded two 3-node Isilon X210 clusters with one additional X210 node each. The clusters were previously installed with OneFS 7.x, and upgraded to OneFS 8.1.0.4 somewhere late 2018. A local team racked and cabled the new Isilon nodes, after which I added them to the cluster remotely via the GUI. Talk about teamwork!

A brief time later the node actually showed up in the isi status command. As you can see in the picture to the right, something was off: the SSD storage didn’t show up as Isilon L3 cache. A quick check did show that the hardware configuration was consistent with the previous, existing nodes. The SmartPool settings/default policy was also set up correctly, with SSDs employed as L3 cache. Weird…

Continue reading

How To: Clone Windows 10 from SATA SSD to M.2 SSD (& fix inaccessible boot device)

1TB WD Black SN750 NVMe M.2 SSDA few weeks ago I received a 1TB Western Digital Black SN750 M.2 SSD, boasting an impressive 3470 MB/s read speed on the packaging. I already had a SATA SSD installed in my gaming/photo editing PC. Nevertheless, those specs got me to pick up a screwdriver and install the new M.2 SSD. The physical installation is dead simple: remove graphics card, install M.2 SSD, reinstall graphics card. I wasn’t really looking forward to a full reinstallation of Windows 10 though. There’s just too many applications, settings and licenses on that system that I didn’t want to recreate or re-enter. Instead, I wanted to clone Windows 10 from SATA SSD to M.2 SSD.

After a little bit of research, I ended up with Macrium Reflect, which is freeware disk cloning software. Long story short: I cloned the old SSD to the M.2 SSD, rebooted from the M.2 SSD, and… was greeted with a variety of errors. The main recurring error was Inaccessible Boot Device, however in my troubleshooting attempts I saw many more errors.

Continue reading

Faster and bigger SSDs enable us to talk about something else than IOps

Bus overload on an old storage array after adding a few SSDs

The first SSDs in our storage arrays were advertised with 2500-3500 IOps per drive. Much quicker than spinning drives, looking at the recommended 140 IOps for a 10k SAS drive. But it was in fact still easy to overload a set of SSDs and reach its max throughput, especially when they were used in a (undersized) caching tier.

A year or so later, when you started adding more flash to a system, the collective “Oomph!” of the Flash drives would overload other components in the storage system. Systems were designed based on spinning media so with the suddenly faster media, busses and CPUs were hammered and couldn’t keep up.

Queue all sorts of creative ways to avoid this bottleneck: faster CPUs, upgrades from FC to multi-lane SAS. Or bigger architectural changes, such as offloading to IO caching cards in the servers themselves (e.g. Fusion-io cards), scale-out systems, etc.

Continue reading

My brain will be melting at Storage Field Day 18!

SFD LogoStorage Field Day 18 will be a full event, according to Stephen Foskett. And Stephen doesn’t use italics too often! Three days, likely 3-4 sessions a day, each two hours long. Add a jetlag, a foreign language and new technology, which all need inline processing to keep up to speed. Outside of the sessions: very interesting conversations (tech and non-tech) while we drive between companies, so no naps. In other words: our brains will be melting for three days at Storage Field Day 18. And I’m VERY much looking forward to it!

Continue reading